Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Simulation of a 1550 nm InGaAsP-InP transistor laser

Identifieur interne : 000D42 ( Chine/Analysis ); précédent : 000D41; suivant : 000D43

Simulation of a 1550 nm InGaAsP-InP transistor laser

Auteurs : RBID : Pascal:10-0268864

Descripteurs français

English descriptors

Abstract

A 1550 InGaAsP-InP multiple-quantum-well (MQW) transistor laser is numerically modeled. The proposed structure has a deep-ridge waveguide and asymmetric doping profile in the base (i.e. only the part below QWs of the base is doped) which provides good optical and electrical confinement and effectively reduces the lateral leakage current and optical absorption. The important physical models and parameters are discussed and validated by modeling a conventional ridge-waveguide laser diode and comparing the results with the experiment. The simulation results of the transistor laser demonstrate a low threshold (< 10 mA) and a > 25 % slope efficiency with the current gain of 2 ∼ 4. The optical saturation and voltage-controlled operation are also demonstrated.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0268864

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Simulation of a 1550 nm InGaAsP-InP transistor laser</title>
<author>
<name>WEI SHI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Vancouver, BC V6T 1Z4</wicri:noRegion>
</affiliation>
</author>
<author>
<name>ZIGANG DUAN</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University</s1>
<s2>Shenzhen 518060</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenzhen 518060</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vafaei, Raha" uniqKey="Vafaei R">Raha Vafaei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Vancouver, BC V6T 1Z4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rouger, Nicolas" uniqKey="Rouger N">Nicolas Rouger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Vancouver, BC V6T 1Z4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Faraji, Behnam" uniqKey="Faraji B">Behnam Faraji</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Vancouver, BC V6T 1Z4</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chrostowski, Lukas" uniqKey="Chrostowski L">Lukas Chrostowski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Canada</country>
<wicri:noRegion>Vancouver, BC V6T 1Z4</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0268864</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0268864 INIST</idno>
<idno type="RBID">Pascal:10-0268864</idno>
<idno type="wicri:Area/Main/Corpus">004440</idno>
<idno type="wicri:Area/Main/Repository">004C15</idno>
<idno type="wicri:Area/Chine/Extraction">000D42</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Doping profiles</term>
<term>Gallium Arsenides</term>
<term>Gallium Phosphides</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Indium Phosphides</term>
<term>Laser diodes</term>
<term>Multiple quantum well</term>
<term>Optical saturation</term>
<term>Optical waveguides</term>
<term>Quantum well lasers</term>
<term>Quaternary compounds</term>
<term>Semiconductor lasers</term>
<term>Waveguide lasers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Saturation optique</term>
<term>Laser puits quantique</term>
<term>Laser semiconducteur</term>
<term>Guide onde optique</term>
<term>Laser guide onde</term>
<term>Diode laser</term>
<term>Puits quantique multiple</term>
<term>Composé quaternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Phosphure</term>
<term>Gallium Phosphure</term>
<term>Indium Arséniure</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Profil dopage</term>
<term>InGaAsP</term>
<term>As Ga In P</term>
<term>In P</term>
<term>InP</term>
<term>0130C</term>
<term>4255P</term>
<term>4279G</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A 1550 InGaAsP-InP multiple-quantum-well (MQW) transistor laser is numerically modeled. The proposed structure has a deep-ridge waveguide and asymmetric doping profile in the base (i.e. only the part below QWs of the base is doped) which provides good optical and electrical confinement and effectively reduces the lateral leakage current and optical absorption. The important physical models and parameters are discussed and validated by modeling a conventional ridge-waveguide laser diode and comparing the results with the experiment. The simulation results of the transistor laser demonstrate a low threshold (< 10 mA) and a > 25 % slope efficiency with the current gain of 2 ∼ 4. The optical saturation and voltage-controlled operation are also demonstrated.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7516</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Simulation of a 1550 nm InGaAsP-InP transistor laser</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Photonics and Optoelectronics Meetings (POEM) 2009 : optoelectronic devices and integration</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WEI SHI</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZIGANG DUAN</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>VAFAEI (Raha)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ROUGER (Nicolas)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FARAJI (Behnam)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHROSTOWSKI (Lukas)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>ZHAO (Zishen)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, University of British Columbia</s1>
<s2>Vancouver, BC V6T 1Z4</s2>
<s3>CAN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University</s1>
<s2>Shenzhen 518060</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="02" i2="1">
<s1>Wuhan dian guang guo jia shi yan shi</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="03" i2="1">
<s1>Zhongguo guang xue xue hui</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA18 i1="04" i2="1">
<s1>China. Jiao yu bu</s1>
<s3>CHN</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>75160P.1-75160P.7</s2>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7905-1</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-7905-5</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174678130240</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0268864</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A 1550 InGaAsP-InP multiple-quantum-well (MQW) transistor laser is numerically modeled. The proposed structure has a deep-ridge waveguide and asymmetric doping profile in the base (i.e. only the part below QWs of the base is doped) which provides good optical and electrical confinement and effectively reduces the lateral leakage current and optical absorption. The important physical models and parameters are discussed and validated by modeling a conventional ridge-waveguide laser diode and comparing the results with the experiment. The simulation results of the transistor laser demonstrate a low threshold (< 10 mA) and a > 25 % slope efficiency with the current gain of 2 ∼ 4. The optical saturation and voltage-controlled operation are also demonstrated.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B79G</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Saturation optique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical saturation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Laser puits quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Quantum well lasers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>12</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Guide onde optique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optical waveguides</s0>
<s5>13</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser guide onde</s0>
<s5>14</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Waveguide lasers</s0>
<s5>14</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diode laser</s0>
<s5>15</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Laser diodes</s0>
<s5>15</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Puits quantique multiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Multiple quantum well</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Pozo cuántico múltiple</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé quaternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quaternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Gallium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Gallium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>55</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>55</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>56</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>56</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Profil dopage</s0>
<s5>61</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Doping profiles</s0>
<s5>61</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InGaAsP</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>As Ga In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>4279G</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fN21>
<s1>172</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Photonics and Optoelectronics Meetings</s1>
<s3>Wuhan CHN</s3>
<s4>2009</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000D42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:10-0268864
   |texte=   Simulation of a 1550 nm InGaAsP-InP transistor laser
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024